Mars Astronomical symbol of Mars
Mars appears as a red-orange globe with darker blotches and white icecaps visible on both of its poles.
Pictured in natural color in 2007[a]
PronunciationScript error: No such module "IPAc-en".
Orbital characteristics
Epoch J2000
Aphelion249200000 km
(154800000 mi; 1.666 AU)
Perihelion206700000 km
(128400000 mi; 1.382 AU)
227939200 km
(141634900 mi; 1.523679 AU)
EccentricityScript error: No such module "val".
686.971 d
(1.88082 yr; Script error: No such module "val". sols)
779.96 d
(2.1354 yr)
24.007 km/s
(86430 km/h; 53700 mph)
Script error: No such module "val".
Script error: No such module "val".
Physical characteristics
Mean radius
3389.5 ± 0.2 km 
(2106.1 ± 0.1 mi)
Equatorial radius
3396.2 ± 0.1 km 
(2110.3 ± 0.1 mi; 0.533 Earths)
Polar radius
3376.2 ± 0.1 km 
(2097.9 ± 0.1 mi; 0.531 Earths)
FlatteningScript error: No such module "val".
144798500 km2[1]
(55907000 sq mi; 0.284 Earths)
VolumeScript error: No such module "val".
(0.151 Earths)
MassScript error: No such module "val".
(0.107 Earths)
Mean density
3.9335 g/cm3
(0.1421 lb/cu in)
3.72076 m/s2[2]
(12.2072 ft/s2; 0.3794 g)
Script error: No such module "val".
5.027 km/s
(18100 km/h; 11250 mph)
Script error: No such module "val".
 24h 37m 22s
Equatorial rotation velocity
241.17 m/s
(868.22 km/h; 539.49 mph)
Script error: No such module "val". to its orbital plane
North pole right ascension
Script error: No such module "val".
 21h 10m 44s
North pole declination
Script error: No such module "val".
Surface temp. min mean max
Kelvin 130 K 210 K 308 K
Celsius −143 °C[3] −63 °C 35 °C[4]
Fahrenheit −226 °F[3] −82 °F 95 °F[4]
−2.94 to +1.86
Surface pressure
0.636 (0.4–0.87) kPa
0.00628 atm
Composition by volume

Mars is the fourth planet from the Sun in the Solar System and the second-smallest solid planet. Mars is a cold terrestrial planet with polar ice caps of frozen water and carbon dioxide.[5][6] It has the largest volcano in the Solar System, and some very large impact craters.[5] Mars is named after the mythological Roman god of war because it appears of red colour.

Space probes such as the Viking program landers are the main tools for the exploration of Mars.


File:Mars rocks.jpg
Surface with rocks everywhere photographed by Mars Pathfinder

Mars is a terrestrial planet and made of rock. The ground there is red because of iron oxide (rust) in the rocks and dust.[7] The planet's atmosphere is very thin. It is mostly carbon dioxide with some argon and nitrogen and tiny amounts of other gases including oxygen. The temperatures on Mars are colder than on Earth, because it is farther away from the Sun and has less air to keep heat in. There is water ice and frozen carbon dioxide at the north and south poles.[6] Mars does not have any liquid water on the surface now, but signs of run-off on the surface were probably caused by water.

The average thickness of the planet's crust is about 50 km (31 mi), with a maximum thickness of 125 km (78 mi).[8]


Mars has two small moons, called Phobos and Deimos.

Physical geography


A Martian day is called a sol, and is a little longer than an Earth day. Mars rotates in 24 hours and 37 minutes. It rotates on a tilted axis, just like the Earth does, so it has four different seasons. Of all the planets in the Solar System, the seasons of Mars are the most Earth-like, due to their similar axial tilt. The lengths of the Martian seasons are almost twice those of Earth's, as Mars's greater distance from the Sun leads to the Martian year being almost two Earth years long.

Martian surface temperatures vary from lows of about −143 °C (−225 °F) (at the winter polar caps)[3] to highs of up to 35 °C (95 °F) (in equatorial summer).[4] The wide range in temperatures is due mostly to the thin atmosphere which cannot store much solar heat. The planet is also 1.52 times as far from the Sun as Earth, resulting in just 43% of the amount of sunlight.[9]


File:Nasa mars opportunity rock water 150 eng 02mar04.jpg
Microscopic photo taken by Opportunity showing a gray hematite concretion, suggesting the past presence of liquid water

A 2015 report says Martian dark streaks on the surface were affected by water.[10]

Liquid water cannot exist on the surface of Mars due to its low atmospheric pressure (there's not enough air to hold it in),[11] except at the lowest elevations for short periods.[12] The two polar ice caps appear to be made largely of frozen water.[6] The amount of ice in the south polar ice cap, if melted, would be enough to cover the entire planet's surface 11 meters deep.[6] A permafrost mantle stretches from the pole to latitudes of about 60°.[13]

Geological evidence gathered by unmanned missions suggest that Mars once had much liquid water on its surface.[14] In 2005, radar data revealed the presence of large quantities of water ice at the poles,[15] and at mid-latitudes. The Mars rover Spirit sampled chemical compounds containing water molecules in March 2007. The Phoenix lander found water ice in shallow Martian soil in July 2008.[16] Landforms seen on Mars strongly suggest that liquid water at some time existed on the planet's surface. Huge areas of ground have been scraped and eroded.

Polar caps

Script error: No such module "Multiple image".

Mars has two permanent polar ice caps. During a pole's winter, it lies in continuous darkness, chilling the surface and causing the deposition of 25–30% of the atmosphere into slabs of CO2 ice (dry ice). When the poles are again exposed to sunlight, the frozen CO2 sublimes (turns to vapor), creating enormous winds that sweep off the poles as fast as 400 km/h. Each season this moves large amounts of dust and water vapor, giving rise to Earth-like frost and large cirrus clouds and dust storms. Clouds of water-ice were photographed by the Opportunity rover in 2004.

The polar caps at both poles consist primarily of water ice.[6]


Mars has a very thin atmosphere with barely any oxygen (it is mostly carbon dioxide). Because there is an atmosphere, however thin it is, the sky does change colour when the sun rises and sets. The dust in the Martian atmosphere makes Martian sunsets somewhat blue. Mars's atmosphere is too thin to protect Mars from meteors, which is why Mars has so many craters.

Meteorite craters

After the formation of the planets, all experienced the "Late Heavy Bombardment". About 60% of the surface of Mars shows a record of impacts from that era.[17] Much of the remaining surface is probably lying over the immense impact basins caused by those events. There is evidence of an enormous impact basin in the northern hemisphere of Mars, spanning 10,600 by 8,500 km (6,600 by 5,300 mi), or roughly four times larger than the largest impact basin yet discovered.[18] This theory suggests that Mars was struck by a Pluto-sized body about four billion years ago. The event is thought to be the cause of the difference between the Martian hemispheres. It made the smooth Borealis basin that covers 40% of the planet.[19][20]

Some meteorites hit Mars with so much force a few pieces of Mars went flying into space – even to Earth! Rocks on Earth are sometimes found which have chemicals that are exactly like the ones in Martian rocks. These rocks also look like they fell really quickly through the atmosphere, so it is reasonable to think they came from Mars.


Mars is home to the highest known mountain in the Solar System, Olympus Mons. Olympus Mons is about 17 miles (or 27 kilometers) high. This is more than three times the height of Earth's tallest mountain, Mount Everest. It is also home to Valles Marineris, the third largest rift system (canyon) in the Solar System, 4,000 km long.

Observation of Mars

File:Trouvelot - The planet Mars - 1877.jpg
A coloured drawing of Mars made in 1877 by the French astronomer Trouvelot

Our records of watching and recording Mars start with ancient Egyptian astronomers in the 2nd millennium BC.[21][22]

Detailed observations of the location of Mars were made by Babylonian astronomers who developed methods using math to predict the future position of the planet. The ancient Greek philosophers and astronomers developed a model of the solar system with the Earth at the center ('geocentric'), instead of the sun. They used this model to explain the planet's motions.[23] Indian and Islamic astronomers estimated the size of Mars and its distance from Earth.[24][25] Similar work was done by Chinese astronomers.[26]

In the 16th century, Nicholas Copernicus proposed a model for the Solar System in which the planets follow circular orbits about the Sun. This 'heliocentric' model was the beginning of modern astronomy. It was revised by Johannes Kepler, who gave an elliptical orbit for Mars which better fit the data from our observations.[27][28][29][30]

The first observations of Mars by telescope was by Galileo Galilei in 1610. Within a century, astronomers discovered distinct albedo features (changes in brightness) on the planet, including the dark patch and polar ice caps. They were able to find the planet's day (rotation period) and axial tilt.[31][32]

Better telescopes developed early in the 19th century allowed permanent Martian albedo features to be mapped in detail. The first crude map of Mars was published in 1840, followed by better maps from 1877 onward. Astronomers mistakenly thought they had detected the spectroscopic mark of water in the Martian atmosphere, and the idea of life on Mars became popular among the public.

Yellow clouds on Mars have been observed since the 1870s, which were windblown sand or dust. During the 1920s, the range of Martian surface temperature was measured; it ranged from –85 to 7 oC. The planetary atmosphere was found to be arid with only traces of oxygen and water. In 1947, Gerard Kuiper showed that the thin Martian atmosphere contained extensive carbon dioxide; roughly double the quantity found in Earth's atmosphere. The first standard naming of Mars surface features was set in 1960 by the International Astronomical Union.

Since the 1960s, multiple robotic spacecraft and rovers have been sent to explore Mars from orbit and the surface. The planet has remained under observation by ground and space-based instruments across a broad range of the electromagnetic spectrum (visible light, infrared and others). The discovery of meteorites on Earth that came from Mars has allowed laboratory examination of the chemical conditions on the planet.

Martian 'canals'

Script error: No such module "Multiple image".

During the 1877 opposition, Italian astronomer Giovanni Schiaparelli used a 22 cm (8.7 in) telescope to help produce the first detailed map of Mars. What caught people's attention was that the maps had features he called canali. These were later shown to be an optical illusion (not real). These canali were supposedly long straight lines on the surface of Mars to which he gave names of famous rivers on Earth. His term canali was popularly mistranslated in English as canals, and thought to be made by intelligent beings.[33][34]

Other astronomers thought they could see the canals too, especially the American astronomer Percival Lowell who drew maps of an artificial network of canals on Mars.[35][36][37][38][39]

Although these results were widely accepted, they were contested.[40] Greek astronomer Eugène M. Antoniadi and English naturalist Alfred Russel Wallace were against the idea; Wallace was extremely outspoken.[41] As bigger and better telescopes were used, fewer long, straight canali were observed. During an observation in 1909 by Flammarion with a 84 cm (33 in) telescope, irregular patterns were observed, but no canali were seen.[42]

Life on Mars?

Because Mars is the one of the closest planets to Earth in the Solar System, many have wondered if there is any kind of life on Mars. Today we know that the kind of life, if any, would be some simple bacteria-type organism.


NASA maintains a catalog of 34 Mars meteorites, that is, meteorites which originally came from Mars.[43] These assets are highly valuable since they are the only physical samples available of Mars.

Studies at NASA's Johnson Space Center show that at least three of the meteorites contain possible evidence of past life on Mars, in the form of microscopic structures resembling fossilized bacteria (so-called biomorphs). Although the scientific evidence collected is reliable, and the rocks are correctly described, what made the rocks look like they do is not clear. To date, scientists are still trying to agree if it really is evidence of simple life on Mars.[44]

Over the past few decades, scientists have agreed that when using meteorites from other planets found on Earth (or rocks brought back to Earth), various things are needed to be sure of life. Those things include:[44]

  1. Did the rock comes from the right time and place on the planet for life to exist?
  2. Does the sample contain evidence of bacterial cells (does it show fossils of some kind, even if very tiny)?
  3. Is there any evidence of biominerals? (minerals usually caused by living things)
  4. Is there any evidence of isotopes typical of life?
  5. Are the features part of the meteorite, and not contamination from Earth?

For people to agree on past life in a geologic sample, most or all of these things must be met. This has not happened yet, but investigations are still in progress.[44] Reexaminations of the biomorphs found in the three Martian meteorites are underway.[45]

The significance of water

Liquid water is necessary for life and metabolism, so if water was present on Mars, the chances of life evolving is improved. The Viking orbiters found evidence of possible river valleys in many areas, erosion and, in the southern hemisphere, branched streams.[46][47][48] Since then, rovers and orbiters have also looked closely and eventually proved water was on the surface at one time, and is still found as ice in the polar ice caps and underground.


So far, scientists have not found life on Mars, either living or extinct. Several space probes have gone to Mars to study it. Some have orbited (gone around) the planet, and some have landed on it. There are pictures of the surface of Mars that were sent back to Earth by the probes. Some people are interested in sending astronauts to visit Mars. They could do a better search, but getting astronauts there would be difficult and expensive. The astronauts would be in space for many years, and it could be very dangerous because of radiation from the sun. So far we have only sent unmanned probes.

The most recent probe to the planet is the Mars Science Laboratory. It landed on Aeolis Palus in Gale Crater on Mars on 6 August 2012.[49] It brought with it a mobile explorer called 'Curiosity'. It is the most advanced space probe ever. Curiosity has dug up Martian soil and studied it in its laboratory. It has found sulfur, chlorine, and water molecules.[50]

Popular culture

Some famous stories were written about this idea. The writers used the name "Martians" for intelligent beings from Mars. In 1898, H. G. Wells wrote The War of the Worlds, a famous novel about Martians attacking the Earth.[51] In 1938, Orson Welles broadcast a radio version of this story in the United States, and many people thought it was really happening and were very afraid.[52] Beginning in 1912, Edgar Rice Burroughs wrote several novels about adventures on Mars.


  1. Template:Cite book
  2. Hirt, C.; Claessens, S. J.; Kuhn, M.; Featherstone, W. E. (July 2012). "Kilometer-resolution gravity field of Mars: MGM2011". Planetary and Space Science 67 (1): 147–154. doi:10.1016/j.pss.2012.02.006. 
  3. 3.0 3.1 3.2 What is the typical temperature on Mars? Retrieved on 2012-08-14
  4. 4.0 4.1 4.2 Mars Exploration Rover Mission: Spotlight. (2007-06-12). Retrieved on 2012-08-14.
  5. 5.0 5.1 "Mars: Extreme Planet". NASA. Retrieved 2011-10-25.
  6. 6.0 6.1 6.2 6.3 6.4 "NASA Jet Propulsion Laboratory - News". 20 April 2009.
  7. "NASA Mars Page". Volcanology of Mars (Retrieved via the Internet Archive). Retrieved 2009-05-13.
  8. Dave Jacqué (2003-09-26). "APS X-rays reveal secrets of Mars' core". Argonne National Laboratory. Retrieved 2006-07-01.
  9. Kluger, Jeffrey 1992. "Mars, in Earth's Image". Discover Magazine
  10. Amos, Jonathan 2015. Martian salt streaks 'painted by liquid water'. BBC News Science & Environment. [1]
  11. The reason is that water sublimates at low atmospheric pressure. In other words, it turns directly into water vapour.
  12. Heldmann, Jennifer L. et al 2005. Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions. Journal of Geophysical Research 110 (E5). PDF: [2]
  13. Kostama V.-P. et al 2006. Recent high-latitude icy mantle in the northern plains of Mars: Characteristics and ages of emplacement. Geophysical Research Letters 33 (11): L11201. [3]
  14. NASA 2006. NASA images suggest water still flows in brief spurts on Mars. [4]
  15. esa. "Water ice in crater at Martian north pole". European Space Agency.
  16. "NASA - NASA Spacecraft Confirms Martian Water, Mission Extended".
  17. Barlow N.G. 1988. Conditions on early Mars: constraints from the cratering record. MEVTV Workshop on Early tectonic and volcanic evolution of Mars. LPI Technical Report 89-04 (Easton, Maryland: Lunar and Planetary Institute) p15.
  18. Sample, Ian 28 June 2008. Cataclysmic impact created north-south divide on Mars. London: Science @ [5]
  19. Minkel J.R. June 2008. Giant asteroid flattened half of Mars, studies suggest. Scientific American. [6]
  20. Chang, Kenneth June 26, 2008. Huge meteor strike explains Mars's shape, reports say. New York Times. [7]
  21. Novaković, B. (2008). "Senenmut: an ancient Egyptian astronomer". Publications of the Astronomical Observatory of Belgrade 85: 19–23. 
  22. Template:Cite book
  23. "Geocentric model". UniverseToday. Retrieved 14 September 2013.
  24. Template:Cite book
  25. Template:Cite book
  26. Template:Cite book
  27. Template:Cite book
  28. Zalta, Edward N., ed. (2005). "Nicolaus Copernicus". Stanford Encyclopedia of Philosophy. Retrieved 2010-01-09. 
  29. Breyer, Stephen (1979). "Mutual occultation of planets". Sky and Telescope 57 (3): 220. 
  30. Template:Cite book
  31. Moore, P. (1984). "The mapping of Mars". Journal of the British Astronomical Association 94 (2): 45–54. 
  32. Sheehan, William (1996). "Chapter 2: pioneers". The planet Mars: a history of observation and discovery. University of Arizona. Retrieved 2010-01-16.
  33. Template:Cite book
  34. Template:Cite book
  35. Template:Cite book
  36. Template:Cite book
  37. Maria, K.; Lane, D. (2005). "Geographers of Mars". Isis 96 (4): 477–506. doi:10.1086/498590. PMID 16536152. 
  38. Perrotin, M. (1886). "Observations des canaux de Mars" (in French). Bulletin Astronomique, Serie I 3: 324–329. 
  39. Slipher, E. C. (1921). "Photographing the planets with especial reference to Mars". Publications of the Astronomical Society of the Pacific 33 (193): 127–139. doi:10.1086/123058. 
  40. Antoniadi, E.M. (1913). "Considerations on the physical appearance of the planet Mars". Popular Astronomy 21: 416–424. 
  41. Template:Cite book
  42. Zahnle, K. (2001). "Decline and fall of the Martian empire". Nature 412 (6843): 209–213. doi:10.1038/35084148. PMID 11449281. 
  43. "Mars Meteorites". NASA. Retrieved February 16, 2010.
  44. 44.0 44.1 44.2 Evidence for ancient Martian life. Gibson E. K. Jr. et al Mail Code SN2, NASA Johnson Space Center, Houston TX 77058, USA.
  45. "Spaceflight Now - Breaking News - Three Martian meteorites triple evidence for Mars life".
  46. Strom R.G., Steven K. Croft, and Nadine G. Barlow 1992. The Martian impact cratering record.University of Arizona Press. Template:Catalog lookup linkScript error: No such module "check isxn".
  47. Raeburn P. 1998. Uncovering the secrets of the red planet Mars. National Geographic Society. Washington D.C.
  48. Moore P. et a 1990. The Atlas of the Solar System. Mitchell Beazley Publishers NY.
  49. Wall, Mike (2012-08-06). "Touchdown! Huge NASA rover lands on Mars". Retrieved 2012-12-31.
  50. Mars Science Laboratory. NASA 2012.
  51. "Pop Culture Mars: Literature". NASA. Retrieved 2011-10-25.
  52. "Pop Culture Mars: Film & Radio". NASA. Retrieved 2011-10-25.


  1. This image was taken by the Rosetta spacecraft's Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS), at a distance of ≈240,000 kilometres (150,000 mi) during its February 2007 encounter. The view is centered on the Aeolis quadrangle, with Gale crater, the landing site of the Curiosity rover, prominently visible just left of center. The darker, more heavily cratered terrain in the south, Terra Cimmeria, is composed of older terrain than the much smoother and brighter Elysium Planitia to the north. Geologically recent processes, such as the possible existence of a global ocean in Mars's past, could have helped lower-elevated areas, such as Elysium Planitia, retain a more youthful look.

Other websites